Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Adv Parasitol ; 123: 51-123, 2024.
Article in English | MEDLINE | ID: mdl-38448148

ABSTRACT

The ascarids are a large group of parasitic nematodes that infect a wide range of animal species. In humans, they cause neglected diseases of poverty; many animal parasites also cause zoonotic infections in people. Control measures include hygiene and anthelmintic treatments, but they are not always appropriate or effective and this creates a continuing need to search for better ways to reduce the human, welfare and economic costs of these infections. To this end, Le Studium Institute of Advanced Studies organized a two-day conference to identify major gaps in our understanding of ascarid parasites with a view to setting research priorities that would allow for improved control. The participants identified several key areas for future focus, comprising of advances in genomic analysis and the use of model organisms, especially Caenorhabditis elegans, a more thorough appreciation of the complexity of host-parasite (and parasite-parasite) communications, a search for novel anthelmintic drugs and the development of effective vaccines. The participants agreed to try and maintain informal links in the future that could form the basis for collaborative projects, and to co-operate to organize future meetings and workshops to promote ascarid research.


Subject(s)
Anthelmintics , Zoonoses , Animals , Humans , Zoonoses/prevention & control , Caenorhabditis elegans , Academies and Institutes , Research , Anthelmintics/therapeutic use
3.
Cell Commun Signal ; 21(1): 297, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37864211

ABSTRACT

BACKGROUND: E. coli O83 (Colinfant Newborn) is a Gram-negative (G-) probiotic bacterium used in the clinic. When administered orally, it reduces allergic sensitisation but not allergic asthma. Intranasal administration offers a non-invasive and convenient delivery method. This route bypasses the gastrointestinal tract and provides direct access to the airways, which are the target of asthma prevention. G- bacteria such as E. coli O83 release outer membrane vesicles (OMVs) to communicate with the environment. Here we investigate whether intranasally administered E. coli O83 OMVs (EcO83-OMVs) can reduce allergic airway inflammation in mice. METHODS: EcO83-OMVs were isolated by ultracentrifugation and characterised their number, morphology (shape and size), composition (proteins and lipopolysaccharide; LPS), recognition by innate receptors (using transfected HEK293 cells) and immunomodulatory potential (in naïve splenocytes and bone marrow-derived dendritic cells; BMDCs). Their allergy-preventive effect was investigated in a mouse model of ovalbumin-induced allergic airway inflammation. RESULTS: EcO83-OMVs are spherical nanoparticles with a size of about 110 nm. They contain LPS and protein cargo. We identified a total of 1120 proteins, 136 of which were enriched in OMVs compared to parent bacteria. Proteins from the flagellum dominated. OMVs activated the pattern recognition receptors TLR2/4/5 as well as NOD1 and NOD2. EcO83-OMVs induced the production of pro- and anti-inflammatory cytokines in splenocytes and BMDCs. Intranasal administration of EcO83-OMVs inhibited airway hyperresponsiveness, and decreased airway eosinophilia, Th2 cytokine production and mucus secretion. CONCLUSIONS: We demonstrate for the first time that intranasally administered OMVs from probiotic G- bacteria have an anti-allergic effect. Our study highlights the advantages of OMVs as a safe platform for the prophylactic treatment of allergy. Video Abstract.


Subject(s)
Asthma , Extracellular Vesicles , Hypersensitivity , Probiotics , Humans , Animals , Mice , Escherichia coli , Lipopolysaccharides , HEK293 Cells , Hypersensitivity/prevention & control , Hypersensitivity/metabolism , Immunity, Innate , Asthma/metabolism , Inflammation/metabolism , Extracellular Vesicles/metabolism , Probiotics/pharmacology
4.
J Antibiot (Tokyo) ; 76(6): 360-364, 2023 06.
Article in English | MEDLINE | ID: mdl-37016014

ABSTRACT

Polymyxin B (PMB) is a peptide based antibiotic that binds the lipid A moiety of lipopolysaccharide (LPS) with a resultant bactericidal effect. The interaction of PMB with LPS presented on outer membrane vesicles (OMVs) is not fully known, however, a sacrificial role of OMVs in protecting bacterial cells by sequestering PMB has been described. Here we assess the ability of PMB to neutralize the immune-stimulatory properties of OMVs whilst modulating the uptake of OMVs in human immune cells. We show for the first time that PMB increases immune cell uptake of Escherichia coli derived OMVs whilst inhibiting TNF and IL-1ß production. Therefore, we present a potential new role for PMB in the neutralization of OMVs via LPS masking and increased immune cell uptake.


Subject(s)
Escherichia coli , Polymyxin B , Humans , Polymyxin B/pharmacology , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Anti-Bacterial Agents/pharmacology , Peptides/pharmacology
5.
J Extracell Vesicles ; 12(1): e12298, 2023 01.
Article in English | MEDLINE | ID: mdl-36604533

ABSTRACT

Over the last decade, research interest in defining how extracellular vesicles (EVs) shape cross-species communication has grown rapidly. Parasitic helminths, worm species found in the phyla Nematoda and Platyhelminthes, are well-recognised manipulators of host immune function and physiology. Emerging evidence supports a role for helminth-derived EVs in these processes and highlights EVs as an important participant in cross-phylum communication. While the mammalian EV field is guided by a community-agreed framework for studying EVs derived from model organisms or cell systems [e.g., Minimal Information for Studies of Extracellular Vesicles (MISEV)], the helminth community requires a supplementary set of principles due to the additional challenges that accompany working with such divergent organisms. These challenges include, but are not limited to, generating sufficient quantities of EVs for descriptive or functional studies, defining pan-helminth EV markers, genetically modifying these organisms, and identifying rigorous methodologies for in vitro and in vivo studies. Here, we outline best practices for those investigating the biology of helminth-derived EVs to complement the MISEV guidelines. We summarise community-agreed standards for studying EVs derived from this broad set of non-model organisms, raise awareness of issues associated with helminth EVs and provide future perspectives for how progress in the field will be achieved.


Subject(s)
Extracellular Vesicles , Helminths , Animals , Humans , Extracellular Vesicles/physiology , Reproducibility of Results , Mammals
6.
PLoS Negl Trop Dis ; 16(8): e0010709, 2022 08.
Article in English | MEDLINE | ID: mdl-35984809

ABSTRACT

BACKGROUND: Infections with Ascaris lumbricoides and Trichuris trichiura remain significant contributors to the global burden of neglected tropical diseases. Infection may in particular affect child development as they are more likely to be infected with T. trichiura and/or A. lumbricoides and to carry higher worm burdens than adults. Whilst the impact of heavy infections are clear, the effects of moderate infection intensities on the growth and development of children remain elusive. Field studies are confounded by a lack of knowledge of infection history, nutritional status, presence of co-infections and levels of exposure to infective eggs. Therefore, animal models are required. Given the physiological similarities between humans and pigs but also between the helminths that infect them; A. suum and T. suis, growing pigs provide an excellent model to investigate the direct effects of Ascaris spp. and Trichuris spp. on weight gain. METHODS AND RESULTS: We employed a trickle infection protocol to mimic natural co-infection to assess the effect of infection intensity, determined by worm count (A. suum) or eggs per gram of faeces (A. suum and T. suis), on weight gain in a large pig population (n = 195) with variable genetic susceptibility. Pig body weights were assessed over 14 weeks. Using a post-hoc statistical approach, we found a negative association between weight gain and T. suis infection. For A. suum, this association was not significant after adjusting for other covariates in a multivariable analysis. Estimates from generalized linear mixed effects models indicated that a 1 kg increase in weight gain was associated with 4.4% (p = 0.00217) decrease in T. suis EPG and a 2.8% (p = 0.02297) or 2.2% (p = 0.0488) decrease in A. suum EPG or burden, respectively. CONCLUSIONS: Overall this study has demonstrated a negative association between STH and weight gain in growing pigs but also that T. suis infection may be more detrimental that A. suum on growth.


Subject(s)
Ascariasis , Swine Diseases , Trichuriasis , Animals , Ascariasis/complications , Ascariasis/epidemiology , Ascariasis/veterinary , Child , Feces/parasitology , Humans , Swine , Swine Diseases/epidemiology , Swine Diseases/parasitology , Trichuriasis/complications , Trichuriasis/epidemiology , Trichuriasis/veterinary , Trichuris/physiology , Weight Gain
8.
J Appl Microbiol ; 133(2): 870-882, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35503033

ABSTRACT

AIMS: To provide a reliable, reproducible and centrifuge-free filtration protocol for clarification of large volumes of bacterial cultures. METHODS AND RESULTS: Four experiments were designed to compare different techniques enabling clarification of Escherichia coli cultures using as a benchmark the concentration and quality of bacterial outer membrane vesicles (OMVs). The experiments were designed to examine the performance of different extraction methods on large volume (≥1 L) filtrations of bacterial culture media. Performance parameters included filtration flow rates, sterility testing and characterization of the filtrates by: (i) SDS-PAGE, (ii) cryogenic transmission electron microscopy, (iii) nanoparticle tracking analysis and (iv) Qubit protein quantification. The experiments revealed that: (i) addition of the filter aid Diatomaceous Earth to the bacterial cultures improved filtration flow rates significantly and eliminated the need for centrifugation prior to filtration; (ii) sterile filtration was successful as no bacterial passage was identified through the membrane filter; (iii) centrifuge-free filtrates contained an increased amount of OMVs compared to centrifuged filtrates. CONCLUSIONS: In comparison to conventional centrifuge-based protocols, the clarification method presented has universal applicability for a broad range of microbial extraction procedures, regardless of the volume of culture harvested. Moreover, the decreased amount of OMVs presented in the filtrates following centrifugation step provides an additional argument in favour of a centrifuge-free approach. SIGNIFICANCE AND IMPACT OF THE STUDY: Sterile filtration is a universal method for the clarification of bacterial cultures. Common challenges related to filtration include filter clogging and long processing times, due to limited centrifugation capacity, which can affect product quality. The proposed protocol is likely to ensure a highly effective filtration process and could be a novel approach in improving the filtrate products without the need of centrifugation.


Subject(s)
Bacteria , Filtration , Centrifugation/methods , Filtration/methods
9.
Trends Parasitol ; 38(4): 277-279, 2022 04.
Article in English | MEDLINE | ID: mdl-35115243

ABSTRACT

Almost 2 years into the coronavirus disease 2019 (COVID-19) pandemic, it remains to be determined how helminths interact with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We discuss how helminths may alter susceptibility to infection, COVID-19 pathology, and the efficiency of vaccines by combined analysis of available COVID-19 data and previous investigations of the effect of helminths in viral infections.


Subject(s)
COVID-19 , Helminths , Animals , COVID-19/prevention & control , COVID-19 Vaccines , Disease Susceptibility , SARS-CoV-2 , Vaccination
10.
J Extracell Vesicles ; 10(10): e12131, 2021 08.
Article in English | MEDLINE | ID: mdl-34429858

ABSTRACT

Emerging evidence suggests that immune cells not only communicate with each other through cytokines, chemokines, and cell surface receptors, but also by releasing small membranous structures known as extracellular vesicles (EVs). EVs carry a variety of different molecules that can be taken up by recipient cells. Parasitic worms are well known for their immunomodulatory properties, but whether they can affect immune responses by altering EV-driven communication between host immune cells remains unclear. Here we provide evidence that stimulation of bone marrow-derived macrophages (BMDMs) with soluble products of Trichuris suis (TSPs), leads to the release of EVs with anti-inflammatory properties. Specifically, we found that EVs from TSP-pulsed BMDMs, but not those from unstimulated BMDMs can suppress TNFα and IL-6 release in LPS-stimulated BMDMs and BMDCs. However, no polarization toward M1 or M2 was observed in macrophages exposed to EVs. Moreover, EVs enhanced reactive oxygen species (ROS) production in the exposed BMDMs, which was associated with a deregulated redox homeostasis as revealed by pathway analysis of transcriptomic data. Proteomic analysis identified cytochrome p450 (CYP450) as a potential source of ROS in EVs from TSP-pulsed BMDMs. Finally, pharmacological inhibition of CYP450 activity could suppress ROS production in those BMDMs. In summary, we find that TSPs can modulate immune responses not only via direct interactions but also indirectly by eliciting the release of EVs from BMDMs that exert anti-inflammatory effects on recipient cells.


Subject(s)
Antigens, Helminth/immunology , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Macrophages/immunology , Macrophages/metabolism , Trichuriasis/immunology , Trichuris/immunology , Animals , Antigens, Helminth/metabolism , Cell Cycle , Cytochrome P-450 Enzyme System/metabolism , Cytokines/metabolism , Helminths/immunology , Helminths/metabolism , Host-Parasite Interactions , Immunity , Immunomodulation , Mice , Proteome/metabolism , Reactive Oxygen Species/metabolism , Trichuris/metabolism
11.
Biomedicines ; 8(7)2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32674418

ABSTRACT

In the last two decades, extracellular vesicles (EVs) from the three domains of life, Archaea, Bacteria and Eukaryotes, have gained increasing scientific attention. As such, the role of EVs in host-pathogen communication and immune modulation are being intensely investigated. Pivotal to EV research is the determination of how and where EVs are taken up by recipient cells and organs in vivo, which requires suitable tracking strategies including labelling. Labelling of EVs is often performed post-isolation which increases risks of non-specific labelling and the introduction of labelling artefacts. Here we exploited the inability of helminths to de novo synthesise fatty acids to enable labelling of EVs by whole organism uptake of fluorescent lipid analogues and the subsequent incorporation in EVs. We showed uptake of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (DOPE-Rho) in Anisakis spp. and Trichuris suis larvae. EVs isolated from the supernatant of Anisakis spp. labelled with DOPE-Rho were characterised to assess the effects of labelling on size, structure and fluorescence of EVs. Fluorescent EVs were successfully taken up by the human macrophage cell line THP-1. This study, therefore, presents a novel staining method that can be utilized by the EV field in parasitology and potentially across multiple species.

12.
Int J Parasitol ; 50(9): 647-654, 2020 08.
Article in English | MEDLINE | ID: mdl-32526222

ABSTRACT

Although the study of helminth-derived extracellular vesicles (EVs) is in its infancy, proteomic studies of EVs from representatives of nematodes, cestodes and trematodes have identified homologs of mammalian EV proteins including components of the endosomal sorting complexes required for transport and heat-shock proteins, suggesting conservation of pathways of EV biogenesis and cargo loading between helminths and their hosts. However, parasitic helminth biology is unique and this is likely reflected in helminth EV composition and biological activity. This opinion article highlights two exceptional studies that identified EVs released by Heligmosomoides polygyrus and Fasciola hepatica which display differential lipid and glycan composition, respectively, when compared with EVs derived from mammalian cells. Furthermore, we discuss the potential implications of helminth EV lipid and glycan composition upon helminth infection and host pathology. Future studies, focusing on the unique composition and functional properties of helminth EVs, may prove crucial to the understanding of host-parasite communication.


Subject(s)
Extracellular Vesicles/chemistry , Helminthiasis/parasitology , Helminths/metabolism , Lipids/analysis , Polysaccharides/analysis , Animals , Host-Parasite Interactions , Humans
13.
J Extracell Vesicles ; 4: 29685, 2015.
Article in English | MEDLINE | ID: mdl-26714455

ABSTRACT

BACKGROUND: Exosomes have been implicated in tumour progression and metastatic spread. Little is known of the effect of mechanical and innate immune interactions of malignant cell-derived exosomes on endothelial integrity, which may relate to increased extravasation of circulating tumour cells and, therefore, increased metastatic spread. METHODS: Exosomes isolated from non-malignant immortalized HCV-29 and isogenic malignant non-metastatic T24 and malignant metastatic FL3 bladder cells were characterized by nanoparticle tracking analysis and quantitative nanomechanical mapping atomic force microscopy (QNM AFM) to determine size and nanomechanical properties. Effect of HCV-29, T24 and FL3 exosomes on human umbilical vein endothelial cell (HUVEC) monolayer integrity was determined by transendothelial electrical resistance (TEER) measurements and transport was determined by flow cytometry. Complement activation studies in human serum of malignant and non-malignant cell-derived exosomes were performed. RESULTS: FL3, T24 and HCV-29 cells produced exosomes at similar concentration per cell (6.64, 6.61 and 6.46×10(4) exosomes per cell for FL3, T24 and HCV-29 cells, respectively) and of similar size (120.2 nm for FL3, 127.6 nm for T24 and 117.9 nm for HCV-29, respectively). T24 and FL3 cell-derived exosomes exhibited a markedly reduced stiffness, 95 MPa and 280 MPa, respectively, compared with 1,527 MPa with non-malignant HCV-29 cell-derived exosomes determined by QNM AFM. FL3 and T24 exosomes induced endothelial disruption as measured by a decrease in TEER in HUVEC monolayers, whereas no effect was observed for HCV-29 derived exosomes. FL3 and T24 exosomes traffic more readily (11.6 and 21.4% of applied exosomes, respectively) across HUVEC monolayers than HCV-29 derived exosomes (7.2% of applied exosomes). Malignant cell-derived exosomes activated complement through calcium-sensitive pathways in a concentration-dependent manner. CONCLUSIONS: Malignant (metastatic and non-metastatic) cell line exosomes display a markedly reduced stiffness and adhesion but an increased complement activation compared to non-malignant cell line exosomes, which may explain the observed increased endothelial monolayer disruption and transendothelial transport of these vesicles.

14.
J Extracell Vesicles ; 3: 25011, 2014.
Article in English | MEDLINE | ID: mdl-25396408

ABSTRACT

BACKGROUND: Cells release a mixture of extracellular vesicles, amongst these exosomes, that differ in size, density and composition. The standard isolation method for exosomes is centrifugation of fluid samples, typically at 100,000×g or above. Knowledge of the effect of discrete ultracentrifugation speeds on the purification from different cell types, however, is limited. METHODS: We examined the effect of applying differential centrifugation g-forces ranging from 33,000×g to 200,000×g on exosome yield and purity, using 2 unrelated human cell lines, embryonic kidney HEK293 cells and bladder carcinoma FL3 cells. The fractions were evaluated by nanoparticle tracking analysis (NTA), total protein quantification and immunoblotting for CD81, TSG101, syntenin, VDAC1 and calreticulin. RESULTS: NTA revealed the lowest background particle count in Dulbecco's Modified Eagle's Medium media devoid of phenol red and cleared by 200,000×g overnight centrifugation. The centrifugation tube fill level impacted the sedimentation efficacy. Comparative analysis by NTA, protein quantification, and detection of exosomal and contamination markers identified differences in vesicle size, concentration and composition of the obtained fractions. In addition, HEK293 and FL3 vesicles displayed marked differences in sedimentation characteristics. Exosomes were pelleted already at 33,000×g, a g-force which also removed most contaminating microsomes. Optimal vesicle-to-protein yield was obtained at 67,000×g for HEK293 cells but 100,000×g for FL3 cells. Relative expression of exosomal markers (TSG101, CD81, syntenin) suggested presence of exosome subpopulations with variable sedimentation characteristics. CONCLUSIONS: Specific g-force/k factor usage during differential centrifugation greatly influences the purity and yield of exosomes. The vesicle sedimentation profile differed between the 2 cell lines.

15.
Proteomics ; 14(6): 699-712, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24376083

ABSTRACT

Cancer cells secrete soluble factors and various extracellular vesicles, including exosomes, into their tissue microenvironment. The secretion of exosomes is speculated to facilitate local invasion and metastatic spread. Here, we used an in vivo metastasis model of human bladder carcinoma cell line T24 without metastatic capacity and its two isogenic derivate cell lines SLT4 and FL3, which form metastases in the lungs and liver of mice, respectively. Cultivation in CLAD1000 bioreactors rather than conventional culture flasks resulted in a 13- to 16-fold increased exosome yield and facilitated quantitative proteomics of fractionated exosomes. Exosomes from T24, SLT4, and FL3 cells were partitioned into membrane and luminal fractions and changes in protein abundance related to the gain of metastatic capacity were identified by quantitative iTRAQ proteomics. We identified several proteins linked to epithelial-mesenchymal transition, including increased abundance of vimentin and hepatoma-derived growth factor in the membrane, and casein kinase II α and annexin A2 in the lumen of exosomes, respectively, from metastatic cells. The change in exosome protein abundance correlated little, although significant for FL3 versus T24, with changes in cellular mRNA expression. Our proteomic approach may help identification of proteins in the membrane and lumen of exosomes potentially involved in the metastatic process.


Subject(s)
Epithelial-Mesenchymal Transition , Exosomes/pathology , Proteome/analysis , Urinary Bladder Neoplasms/pathology , Urinary Bladder/pathology , Animals , Cell Line, Tumor , Exosomes/metabolism , Humans , Intercellular Signaling Peptides and Proteins/analysis , Intercellular Signaling Peptides and Proteins/metabolism , Liver Neoplasms/secondary , Lung Neoplasms/secondary , Mass Spectrometry , Mice , Neoplasm Metastasis/pathology , Proteome/metabolism , Urinary Bladder/metabolism , Urinary Bladder Neoplasms/metabolism , Vimentin/analysis , Vimentin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...